Representation andm-term approximation for anisotropic Besov classes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation on anisotropic Besov classes with mixed norms by standard information

This article considers the approximation problem on periodic functions of anisotropic Besov classes with mixed norms using standard information. The asymptotic decay rates of the best algorithms in the worst-case setting are determined. An interpolating algorithm that attains this decay rate is given as well. © 2005 Elsevier Inc. All rights reserved.

متن کامل

Approximation of anisotropic classes by standard information

This paper dealswith the approximationproblemonanisotropicBesov classesSr p B(R ),p=(p1, . . . , pd), and Besov–Wiener classes Sr pq B(R d) using standard information. The asymptotic decay rates of the best algorithms in the worst-case setting are determined. © 2007 Elsevier Inc. All rights reserved.

متن کامل

Anisotropic Besov Spaces and Approximation Numbers of Traces on Related Fractal Sets

This paper deals with approximation numbers of the compact trace operator of an anisotropic Besov space into some Lp-space, trΓ : B s,a pp (R ) ↪→ Lp(Γ), s > 0, 1 < p < ∞, where Γ is an anisotropic d-set, 0 < d < n. We also prove homogeneity estimates, a homogeneous equivalent norm and the localization property in B pp .

متن کامل

Nonlinear piecewise polynomial approximation beyond Besov spaces

We study nonlinear n-term approximation in Lp(R) (0 < p <∞) from Courant elements or (discontinuous) piecewise polynomials generated by multilevel nested triangulations of R2 which allow arbitrarily sharp angles. To characterize the rate of approximation we introduce and develop three families of smoothness spaces generated by multilevel nested triangulations. We call them B-spaces because they...

متن کامل

An Integral Representation for Besov and Lipschitz Spaces

It is well known that functions in the analytic Besov space B1 on the unit disk D admits an integral representation f(z) = ∫ D z − w 1− zw dμ(w), where μ is a complex Borel measure with |μ|(D) < ∞. We generalize this result to all Besov spaces Bp with 0 < p ≤ 1 and all Lipschitz spaces Λt with t > 1. We also obtain a version for Bergman and Fock spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2014

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2013.07.069